
Chapter 1

Fourier Series

1.1 Introduction.

We will consider complex valued periodic functions on R with period 2π. We
can view them as functions defined on the circumference T of the unit circle
in the complex plane or equivalently as function f defined on [−π, π] with
f(−π) = f(π). In that case, smoothness requires matching the derivatives as
well at ±π. The Fourier Coefficcients of a periodic function f ∈ L1[−π, π]
are defined by

an =
1

2π

∫ π

−π

f(x)e−inxdx =
1

2π

∫

T

f(x)e−inxdx (1.1)

If a function f has the representation as a Fourier Series

f(x) ≃
∑

−∞<n<∞

ane
inx (1.2)

with
∑

−∞<n<∞ |an| < ∞, since

1

2π

∫

T

eimxe−inxdx = δn,m

we see that the coefficients an can be recovered from f by formula (1.1). If
we assume that f ∈ L1[T] then clearly an is well defined and

|an| ≤
1

2π

∫

T

|f(x)|dx

1
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It is not clear that the series on right hand side of equation (1.2) converges
and even if it does, it is not clear that the sum of the series is actually equal
to the the function f(x). It is relatively easy to find conditions on f(·) so that
the series (1.2) is convergent. If f(x) is assumed to be k times continuously
differentiable on T, integrating by parts k times one gets, for n 6= 0,

|an| =
1

|n|k
∣

∣

1

2π

∫

T

f (k)(x)e−inxdx
∣

∣ ≤
1

|n|k
sup
x

|f {k}(x)| (1.3)

From the estimate (1.3) it is easily seen that the series is convergent if f is
twice continuously differentiable.

An important but elementary fact is the Riemann-Lebesgue theorem.

Theorem 1. For every f ∈ L1[T],

lim
n→±∞

|an| = 0 (1.4)

Proof. Let f ∈ L1[T] and ǫ > 0 be given. Since smooth functions are dense
in L1, given ǫ > 0, we can approximate f by a function gǫ such that

1

2π

∫

T

|f(x)− gǫ(x)|dx ≤ ǫ

and gǫ is continuously differentiable. Then

|an| ≤ |
1

2π

∫

T

gǫe
−inxdx|+

1

2π

∫

T

|f(x)− gǫ(x)|dx

≤
1

|n|

1

2π

∫

T

|g′ǫ(x)|dx+
1

2π

∫

T

|f(x)− gǫ(x)|dx

≤
1

|n|
sup
x

|g′ǫ(x)|+ ǫ

and lim supn→±∞ |an| ≤ ǫ. Since ǫ > 0 is arbitrary lim supn→±∞ |an| = 0.

1.2 Convergence of Fourier Series.

Let us define the partial sums

(sNf)(x) = sN(f, x) =
∑

|n|≤N

ane
inx (1.5)
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and the Fejér sum

(SNf)(x) = SN (f, x) =
1

N + 1

∑

0≤n≤N

sn(f, x) (1.6)

We can calculate

(snf)(x) =
1

2π

∑

|j|≤n

eijx
∫

T

e−ijyf(y)dy

=
1

2π

∫

T

f(y)[
∑

|j|≤n

eij(x−y)]dy

=
1

2π

∫

T

f(y)
e−in(x−y)(ei(2n+1)(x−y) − 1)

ei(x−y) − 1
dy

=

∫

T

f(y)kn(x− y)dy (1.7)

= (f ∗ kn)(x) (1.8)

where

kn(z) =
1

2π

e−inz(ei(2n+1)z − 1)

eiz − 1
=

1

2π

sin(n + 1
2
)z

sin z
2

(1.9)

and the convolution f ∗ g of two functions f, g in L1[T] is defined as

(f ∗ g)(x) =

∫

T

f(y)g(x− y)dy =

∫

T

f(x− y)g(y)dy (1.10)

A similar calculation reveals

(SNf)(x) =

∫

T

f(y)KN(x− y)dy = (f ∗KN)(x) (1.11)

where

KN(z) =
1

2π

1

(N + 1)

1

sin z
2

∑

0≤n≤N

[sin(n +
1

2
)z]

=
1

2π

1

(N + 1)

[

sin (N+1)z
2

sin z
2

]2

(1.12)
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Since

kn(z) =
∑

|j|≤n

aje
ijx

KN (z) =
1

N + 1

N
∑

0

kn(z)

=
∑

|n|≤N

(1−
|n|

N + 1
)ane

i n x

Notice that for every N ,
∫

T

kN(z)dz =

∫

T

KN(z)dz = 1 (1.13)

The following observations are now easy to make.

1. Nonnegativity.
KN(z) ≥ 0

2. For any δ > 0,
lim

N→∞
sup
|z|≥δ

KN(z) = 0

3. Therefore

lim
N→∞

∫

|z|≥δ

KN(z)dz = 0

It is now an easy exercise to prove

Theorem 2. For any f that is bounded and continuous on T

lim
N→∞

sup
x∈T

|SN(f, x)− f(x)| = 0

Proof. Let δ > 0 be given. Then

|SN(f, x)− f(x)| = |

∫

[f(x− z)− f(x)]KN(z)dz|

≤

∫

|z|≤δ

|f(x− z)− f(x)|KN(z)dz +

∫

|z|≥δ

|f(x− z)− f(x)|KN(z)dz

≤ sup
x

sup
|z|≤δ

|f(x− z)− f(x)|+ 2 sup
x

|f(x)|

∫

|z|≥δ

KN(z)dz
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If we let N → ∞ and then δ → 0

lim sup
N→∞

sup
x

|SN(f, x)− f(x)| ≤ sup
x

sup
|z|≤δ

|f(x− z)− f(x)| → 0

as δ → 0.

Theorem 3. For 1 ≤ p < ∞ and f ∈ Lp[−π, π]

‖SN(f, ·)‖p ≤ ‖f‖p

and therefore

lim
N→∞

‖SNf − f‖p = 0

Proof. By Hölder’s inequality for any x

|SN(f, x)|
p ≤

∫

T

|f(z)|pKN(x− z)dz

and integrating with respect to x we obtain the first part of the theorem.
For any f ∈ Lp and ǫ > 0 we can find g such that it is continuous and
‖f − g‖p ≤ ǫ.

‖SNf − f‖p ≤ ‖SNf − SNg‖p + ‖SNg − g‖p + ‖g − f‖p ≤ ‖SNg − g‖p + 2ǫ

‖SNg−g‖p ≤ supx |SN(g, x)−g(x)| → 0 asN → ∞ and ǫ > 0 is arbitrary.

The behavior of sN(f, x) is more complicated. It is easy enough to observe
that for f ∈ C2(T),

lim
N→∞

sup
x

|sN(f, x)− f(x)| = 0

The series converges and so sN(f, ·) has a uniform limit g. The Cesàro average
SN(f, ·) has the same limit, which has just been shown to be f . Therefore
f = g. The following theorem is fairly easy.

Theorem 4. If f ∈ L1 satisfies at some x, |f(y) − f(x)| ≤ c|y − x|α for

some α > 0 and c < ∞, then at that x,

lim
N→∞

sN(f, x) = f(x)
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Proof. We can assume with out loss of generality that x = 0 and let f(0) = a.
We need to show that

lim
N→∞

1

2π

∫

T

f(y)
sin(N + 1

2
)y

sin y

2

dy = a (1.14)

Because f(y)−a

sin y

2

is integrable, (1.14) is a consequence of the Riemann-Lebesgue

Theorem, i.e. Theorem 1.

Let us now assume that f is a function of bounded variation on T which
has left and right limits al and ar at 0. It is easy to check that

∣

∣

∣

∣

1

sin(y
2
)
−

1
y

2

∣

∣

∣

∣

≤ C|y|

and it follows from Riemann-Lebesgue theorem that

lim
λ→∞

1

2π

∫ π

−π

f(y) sinλy

[

1

sin(y
2
)
−

1

(y
2
)

]

dy = 0

By change of variables one can reduce the calculation of

lim
N→∞

1

2π

∫

T

f(y)
sin(N + 1

2
)y

sin y

2

dy

to calculating

lim
λ→∞

1

π

∫ λπ

−λπ

f
(y

λ

)sin y

y
dy

If we denote by

G(y) =

∫ ∞

y

sin x

x
dx

then G(∞) = 0 and G(0) = π
2
.

ar(λ) =
1

π

∫ λπ

0

f
(y

λ

)sin y

y
dy = −

1

π

∫ λπ

0

f
(y

λ

)

dG(y)

=
1

2
ar +

1

π

∫ λπ

0

G(y)df
(y

λ

)

=
1

2
ar +

1

π

∫ π

0

G(λy)df(y)

→
1

2
ar

by the bounded convergence theorem. This establishes the following



1.3. SPECIAL CASE P = 2 7

Theorem 5. If f is of bounded variation on T, for every x ∈ T,

lim
N→∞

sN (f, x) =
f(x+ 0) + f(x− 0)

2

On the other hand the behavior of sN(f, x) for f in C(T), the space of
continuous functions on T or in Lp[−π, π] for 1 ≤ p < ∞ is more complex.
For example one can ask. Does sN(f, x) → f(x) in Lp ? How about for
almost all x? Let us define the linear operator

(Tλf)(x) =

∫ π

−π

f(x+ y)
sinλy

sin y

2

dy (1.15)

on smooth functions f . It is more convenient to think of f as a periodic
function of period 2π defined on R. If sN (f, x) were to converge uniformly
to f for every bounded continuous function it would follow by the uniform
boundedness principle that

sup
x

|(Tλf)(x)| ≤ C sup
x

|f(x)|

with a constant independent of f as well as λ, at least for λ = N + 1
2
where

N is a positive integer. Let us show that this is false. The best possible
bound C = Cλ is seen to be Cλ = 1

2π

∫ π

−π

| sinλy|
| sin y

2
|
dy and because | 1

sin y

2

− 2
y
| is

integrable on [−π, π], Cλ differs from

1

2π

∫ π

−π

|2 sinλy|

|y|
dy =

1

π

∫ λπ

−λπ

| sin y|

|y|
dy

by a uniformly bounded amount. The divergence of 1
2π

∫∞

−∞
| sin y|
|y|

dy implies
that Cλ → ∞ as λ → ∞. By duality this means that Tλf is not uniformly
bounded as an operator from L1[−π, π] into itself either. Again because of
uniform boundedness principle one cannot expect that sN(f, ·) tends to f(·)
in L1[−π, π] for every f ∈ L1[−π, π].

1.3 Special case p = 2

When p = 2 we have a Hilbert Space L2(T) with the inner product

〈f, g〉 =
1

2π

∫

T

f̄ g dx
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and

‖f‖22 =
1

2π

∫

T

|f(x)|2dx

We have taken the normalized Lebesgue measure dµ = dx
2π

so that µ(T ) = 1.
The functions {en(·) = einx : n ∈ Z} form a complete orthonormal basis and
the Fourier series is the expansion

f(x) =

∞
∑

n=−∞

ane
inx

which converges in L2(T) with an given by

an = 〈en, f〉 =
1

2π

∫

T

e−inxf(x)dx

The Plancherel-Perseval identities state

∞
∑

n=−∞

|an|
2 =

1

2π

∫

T

|f(x)|2dx

and
∞
∑

n=−∞

ānbn =
1

2π

∫

T

f(x)g(x)dx

1.4 Higher dimensions.

If we have periodic functions f(x) = f(x1, . . . , xd) of d variables with period
2π in every variable then the Fourier transforms are defined on Zd. If n =
(n1, . . . , nd) then

an =
1

(2π)d

∫

Td

ei〈n, x〉dx

While most of the one dimensional results carry over to d dimensions, one
needs to be careful about the partial sums. Results that depend on the
explicit form of the kernels kN and KN have to reexamined. While partial
sums over sets of the form ∩i{|ni| ≤ N} or even ∩i{|ni| ≤ Ni} can be handled,
it is hard to analyze partial sums over sets of the form {n :

∑

i n
2
i ≤ N}.
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1.5 Singular Integrals.

We start with a useful covering lemma known as Vitali covering lemma.

Lemma 6. Let K ⊂ S be a compact subset of R and {Iα} be a collection of

intervals covering K. Then there is a finite sub-collection {Ij} such that

1. {Ij} are disjoint.

2. The intervals {3Ij} that have the same midpoints as {Ij} but three

times the lenghth cover K.

Proof. We first choose a finite subcover. From the finite subcover we pick
the largest interval. In case of a tie pick any of the competing ones. Then, at
any stage, of the remaining intervals from our finite subcollection we pick the
largest one that is disjoint from the ones already picked. We stop when we
cannot pick any more. The collection that we end up with is clearly disjoint
and finite. Let x ∈ K. This is covered by one of the intervals I from our
finite subcollection covering K. If I was picked there is nothing to prove.
If I was not picked it must intersect some Ij already picked. Let us look
at the first such interval and call it I. I is disjoint from all the previously
picked ones and I was passed over when we picked I. Therefore in addition
to intersecting I, I is not larger than I. Therefore 3I ⊃ I ∋ x.

The lemma is used in proving maximal inequalities. For instance, for the
Hardy-Littlewood maximal function we have

Theorem 7. Let f ∈ L1(T). Define

Mf (x) = sup
0<r<π

2

1

2r

∫

|y−x|<r

|f(y)|dy (1.16)

µ[x : Mf(x) > ℓ] ≤
3
∫

|f(y)|dy

ℓ
(1.17)

Proof. Let us denote by Eℓ the set

Eℓ = {x : Mf(x) > ℓ}

and let K ⊂ Eℓ be an arbitrary compact set. For each x ∈ K there is an
interval Ix such that

∫

Ix

|f(y)|dy ≥ ℓµ(Ix)
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Clearly {Ix} is a covering of K and by lemma we get a finite disjoint sub
collection {Ij} such that {3Ij} covers K. Adding them up

∫

|f(y)|dy ≥ ℓ
∑

j

µ(Ij) =
ℓ

3

∑

j

µ(3Ij) ≥
ℓ

3
µ(K)

Sine K ⊂ Eℓ is arbitrary we are done.

There is no problem in replacing {x : |Mf (x)| > ℓ} by {x : |Mf(x)| ≥ ℓ}.
Replace ℓ by ℓ− ǫ and let ǫ → 0.

This theorem can be used to prove the Labesgue diffrentiability theorem.

Theorem 8. For any f ∈ L1(S),

lim
h→0

1

2h

∫

|x−y|≤h

|f(y)− f(x)|dy = 0 a.e. x (1.18)

Proof. It is sufficient to prove that for any δ > 0

µ[x : lim sup
h→0

1

2h

∫

|x−y|≤h

|f(y)− f(x)|dy ≥ δ] = 0

Given ǫ > 0 we can write f = f1 + g with f1 continuous and ‖g‖1 ≤ ǫ and

µ[x : lim sup
h→0

1

2h

∫

|x−y|≤h

|f(y)− f(x)|dy ≥ δ]

= µ[x : lim sup
h→0

1

2h

∫

|x−y|≤h

|g(y)− g(x)|dy ≥ δ]

≤ µ[x : sup
h>0

1

2h

∫

|x−y|≤h

|g(y)− g(x)|dy ≥ δ]

≤
3‖g‖1
δ

≤
3ǫ

δ

Since ǫ > 0 is arbitrary we are done.

In other words the maximal inequality is useful to prove almost sure
convergence. Typically almost sure convergence will be obvious for a dense
set and the maximal inequality will be used to interchange limits in the
approximation.
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Another summability method, like the Fejer sum that is often considered
is the Poisson sum

S(ρ, x) =
∑

n

anρ
|n|einx

and the kernel corresponding to it is the Poisson kernel

p(ρ, z) =
1

2π

∑

n

ρ|n|einz =
1

2π

1− ρ2

(1− 2ρ cos z + ρ2)
(1.19)

so that

P (ρ, x) =

∫

f(y)p(ρ, x− y)dy

It is left as an exercise to prove that for for 1 ≤ p < ∞, every f ∈ Lp

P (ρ, ·) → f(·) in Lp as ρ → 1. We will prove a maximal inequality for the
Poisson sum, so that as a consequence we will get the almost sure convergence
of P (ρ, x) to f for every f in L1.

Theorem 9. For every f in L1

µ[x : sup
0≤ρ<1

P (ρ, x) ≥ ℓ] ≤
C‖f‖1

ℓ
(1.20)

Proof. The proof consists of estimating the Poisson maximal function in
terms of the Hardy-Littlewood maximal function Mf (x).

We begin with some simple estimates for the Poisson kernel p(ρ, z).

p(ρ, z) =
1

2π

1− ρ2

(1− ρ)2 + 2ρ(1− cos z)
≤

1

2π

1− ρ2

(1− ρ)2

=
1

2π

1 + ρ

1− ρ
≤

1

π

1

1− ρ

The problem therefore is only as ρ → 1. Lets us assume that ρ ≥ 1
2
.

Lemma 10. For any symmetric function φ(z) the integral
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|

∫ π

−π

f(z)φ(z)dz|

= |

∫ π

0

[f(z) + f(−z)]φ(z)dz|

= |

∫ π

0

φ(z)[
d

dz

∫ z

−z

f(y)dy]dz|

≤ |

∫ π

0

φ′(z)[

∫ z

−z

f(y)dy]dz|+ |φ(π)

∫ π

−π

f(z)dz|

≤

∫ π

0

2|zφ′(z)|
1

2z
[

∫ z

−z

|f(y)|dy]dz + φ(π)|

∫ π

−π

|f(z)|dz

≤ 2Mf (0)

∫ π

0

|zφ′(z)|dz + |φ(π)||Mf(0)|

For the Poisson kernel

|z
d

dz
p(ρ, z)| =

1

2π

1− ρ2

(1− 2ρ cos z + ρ2)2
2ρ|z sin z|

≤
1

π

(1− ρ)z2

(1− ρ)4 + (1− cos z)2

≤ C
(1− ρ)z2

(1− ρ)4 + z4

and

∫ π

−π

|z
d

dz
p(ρ, z)|dz ≤ C

∫ π

−π

(1− ρ)z2

(1− ρ)4 + z4
dz

=

∫ π
1−ρ

− π
1−ρ

z2

1 + z4
dz

≤

∫ ∞

−∞

z2

1 + z4
dz ≤ C1

uniformly in ρ.
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1.6 Exercises.

1. Instead of Fejér sum if we use

(WNf)(x) =
∑

anw(N, n)e i n x

with w(N, n) → 1 as N → ∞ what simple additional conditions will
ensure the convergence of WNf to f? In L1[T] or L2[T]

2. What about w(N, n) = e−
n
N ?

3. What about w(N, n) = e−
n2

N ?

4. What about w(N, n) = 2e−
n2

N − e−
2n2

N

5. Can you formulate higher dimensional analogs ?

6. Use lemma 10 to complete the proof of Theorem 9.

7. For an function f defined on T, the harmonic extension inside the circle
is given by

U(f, r, α) =
1

2π

∫

f(θ)

(1− 2r cos(θ − α) + r2)
dθ

Show that for f ∈ L1[T]

lim
r→1

U(f, r, α) = f(α)

for almost all α ∈ T


